I want to get the marginal effects of a logistic regression from a sklearn
model
I know you can get these for a statsmodel logistic regression using '.get_margeff()'. Is there nothing for sklearn? I want to avoid doing the calculation my self as I feel there would be a lot of room for error.
import statsmodels.formula.api as sm
from statsmodels.tools.tools import add_constant
from sklearn.datasets import load_breast_cancer
import pandas as pd
import numpy as npdata = load_breast_cancer()
x = data.data
y= data.target
x=add_constant(x,has_constant='add')model = sm.Logit(y, x).fit_regularized()
margeff = model.get_margeff(dummy=True,count=True)
##print the margal effect
print(margeff.margeff)
>> [ 6.73582136e-02 2.15779589e-04 1.28857837e-02 -1.06718136e-03-1.96032750e+00 1.36137385e+00 -1.16303369e+00 -1.37422595e+008.14539021e-01 -1.95330095e+00 -4.86235558e-01 4.84260993e-027.16675627e-02 -2.89644712e-03 -5.18982198e+00 -5.93269894e-013.22934080e+00 -1.28363008e+01 3.07823155e+00 5.84122170e+001.92785670e-02 -9.86284081e-03 -7.53298463e-03 -3.52349287e-049.13527446e-01 1.69938656e-01 -2.89245493e-01 -4.65659522e-01-8.32713335e-01 -1.15567833e+00]# manual calculation, doing this as you can get the coef_ from a sklearn model and use in the functiondef PDF(XB):var1 = np.exp(XB)var2 = np.power((1+np.exp(XB)),2)var3 = (var1 / var2) return var3
arrPDF = PDF(np.dot(x,model.params))
ME=pd.DataFrame(np.dot(arrPDF[:,None],model.params[None,:]))
print(ME.iloc[:,1:].mean().to_list())>>
[0.06735821358791198, 0.0002157795887363032, 0.012885783711597246, -0.0010671813611730326, -1.9603274961356965, 1.361373851981879, -1.1630336876543224, -1.3742259536619654, 0.8145390210646809, -1.9533009514684947, -0.48623555805230195, 0.04842609927469917, 0.07166756271689229, -0.0028964471200298475, -5.189821981601878, -0.5932698935239838, 3.229340802910038, -12.836300822253634, 3.0782315528664834, 5.8412217033605245, 0.019278567008384557, -0.009862840813512401, -0.007532984627259091, -0.0003523492868714151, 0.9135274456151128, 0.16993865598225097, -0.2892454926120402, -0.46565952159093893, -0.8327133347971125, -1.1556783345783221]
the custom function gives the same as ".get_margeff()
" but there might be a lot of room for error when using the sklearn ceof_ in the custom function above.
- Is there some method/function/Attribute in sklearn that can give me the marginal effects
- If there is not, is there another library get from the ceof_ and data to the marginal effects
- if the answer to both the above is no, are there any circumstances in which the custom function will not work (e.g. with a particular solver or penalty in sklearn)