I have JSON data which I am planning after converting it to desired dataframe, will concat with another dataframe.
Participant
**row 1** [{'roles': [{'type': 'director'}, {'type': 'founder'}, {'type': 'owner'}, {'type': 'real_owner'}], 'life': {'name': 'Lichun Du'}}]**row 2** [{'roles': [{'type': 'board'}], 'life': {'name': 'Erik Mølgaard'}}, {'roles': [{'type': 'director'}, {'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Mikael Bodholdt Linde'}}, {'roles': [{'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Dorte Bøcker Linde'}}]**row 3** [{'roles': [{'type': 'director'}, {'type': 'real_owner'}], 'life': {'name': 'Kristian Løth Hougaard'}}, {'roles': [{'type': 'owner'}], 'life': {'name': 'WORLD JET HOLDING ApS'}}]
However, I want it like this where dynamically the column will be generated and "N" of Participant#N Role or Participant#N Name should be the maximum number of participant present in the rows of the dataframe overall :
So far I have tried:
Try 01:
participants = pd.concat([pd.DataFrame(pd.json_normalize(x)) for x in responses['participants']])
print(participants.transpose())
I could not find any relevant post to move forward to the desired dataframe.
Try 02:
responses['Role of Participants'] = [x[0]['roles'] for x in participants['roles']]
responses['Participant Name'] = [x[0]['life'] for x in participants['participants']]
But it just returned only the first type object in role and first name object of life for each data where there can be multiple.
You could run one apply()
which will use for
-loop to convert list to Series
with headers - it can use enumerate
to put correct number in headers.
Because some rows have less participants so it puts NaN
which you can later fill with empty strings.
And next you can use join()
to add all as new columns. Because headers are create in apply()
so you don't have to create them in join()
import pandas as pddata = {'participants':
[[{'roles': [{'type': 'director'}, {'type': 'founder'}, {'type': 'owner'}, {'type': 'real_owner'}], 'life': {'name': 'Lichun Du'}}],[{'roles': [{'type': 'board'}], 'life': {'name': 'Erik Mølgaard'}}, {'roles': [{'type': 'director'}, {'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Mikael Bodholdt Linde'}}, {'roles': [{'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Dorte Bøcker Linde'}}],[{'roles': [{'type': 'director'}, {'type': 'real_owner'}], 'life': {'name': 'Kristian Løth Hougaard'}}, {'roles': [{'type': 'owner'}], 'life': {'name': 'WORLD JET HOLDING ApS'}}],
]
}df = pd.DataFrame(data)def get_names(cell):all_names = pd.Series(dtype=object)for number, item in enumerate(cell, 1):name = item['life']['name']all_names[f'Participant #{number} Name'] = namereturn all_namesdef get_roles(cell):all_roles = pd.Series(dtype=object)for number, item in enumerate(cell, 1):roles = [role['type'] for role in item['roles']]all_roles[f'Participant #{number} Role'] = ",".join(roles)return all_rolesroles = df['participants'].apply(get_roles)
roles = roles.fillna('') # put empty string in place of NaNnames = df['participants'].apply(get_names)
names = names.fillna('') # put empty string in place of NaNdf = df.join(roles)
df = df.join(names)df = df.drop(columns=['participants']) # remove old columnpd.options.display.max_colwidth = 100
print(df.to_string())
Result:
Participant #1 Role Participant #2 Role Participant #3 Role Participant #1 Name Participant #2 Name Participant #3 Name
0 director,founder,owner,real_owner Lichun Du
1 board director,board,real_owner board,real_owner Erik Mølgaard Mikael Bodholdt Linde Dorte Bøcker Linde
2 director,real_owner owner Kristian Løth Hougaard WORLD JET HOLDING ApS
I used two function to get first only columns with roles and next columns only with names - but if you would need role1, name1, role2, name2, role3, name3
then it could be done with one function.
import pandas as pddata = {'participants':
[[{'roles': [{'type': 'director'}, {'type': 'founder'}, {'type': 'owner'}, {'type': 'real_owner'}], 'life': {'name': 'Lichun Du'}}],[{'roles': [{'type': 'board'}], 'life': {'name': 'Erik Mølgaard'}}, {'roles': [{'type': 'director'}, {'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Mikael Bodholdt Linde'}}, {'roles': [{'type': 'board'}, {'type': 'real_owner'}], 'life': {'name': 'Dorte Bøcker Linde'}}],[{'roles': [{'type': 'director'}, {'type': 'real_owner'}], 'life': {'name': 'Kristian Løth Hougaard'}}, {'roles': [{'type': 'owner'}], 'life': {'name': 'WORLD JET HOLDING ApS'}}],
]
}df = pd.DataFrame(data)def get_columns(cell):results = pd.Series(dtype=object)for number, item in enumerate(cell, 1):name = item['life']['name']results[f'Participant #{number} Name'] = nameroles = [role['type'] for role in item['roles']]results[f'Participant #{number} Role'] = ",".join(roles)return resultscolumns = df['participants'].apply(get_columns)
names = columns.fillna('') # put empty string in place of NaNdf = df.join(columns)
#print(df.columns)df = df.drop(columns=['participants'])pd.options.display.max_colwidth = 100
print(df.to_string())
Result:
Participant #1 Name Participant #1 Role Participant #2 Name Participant #2 Role Participant #3 Name Participant #3 Role
0 Lichun Du director,founder,owner,real_owner NaN NaN NaN NaN
1 Erik Mølgaard board Mikael Bodholdt Linde director,board,real_owner Dorte Bøcker Linde board,real_owner
2 Kristian Løth Hougaard director,real_owner WORLD JET HOLDING ApS owner NaN NaN