I want to get a vector size(46). But I getting array. The dataset that I used is Reuters.
The place where I print NN predictions is the last lines of code.
Code:
from keras.datasets import reuters
from keras import models, layers, losses
from keras.utils.np_utils import to_categorical
import numpy as np(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])def vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequences in enumerate(sequences):results[i, sequences] = 1.return resultsx_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])x_val = x_train[:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]history = model.fit(partial_x_train,partial_y_train,epochs=9, batch_size=128, validation_data=(x_val, y_val))predictions = model.predict(x_test)predictions[0].shape
print(predictions)
Output:
# WHY?
[[4.2501447e-06 1.9825067e-07 2.3206076e-07 ... 2.1613120e-079.8317461e-09 1.3596014e-07][1.6055314e-02 1.4951903e-01 1.4057434e-04 ... 1.1199807e-041.8230558e-06 2.4111385e-03][7.8554759e-03 6.6994888e-01 1.6705523e-03 ... 4.0704478e-042.4865860e-05 7.2334736e-04]...[2.9577111e-06 9.5703072e-06 3.2641565e-05 ... 2.3492355e-061.8574113e-06 3.1159422e-07][1.7232201e-03 1.7063649e-01 1.5664790e-02 ... 4.8910693e-044.2799808e-04 1.0207186e-03][1.7965600e-04 6.5334785e-01 7.2387634e-03 ... 9.2276223e-061.9617393e-05 1.7480283e-05]]