I have been trying to rewrite the code from Python to Swift but I'm stuck on the function which should return the least-squares solution to a linear matrix equation. Does anyone know a library written in Swift which has an equivalent method to the numpy.linalg.lstsq
? I'd be grateful for your help.
Python code:
a = numpy.array([[p2.x-p1.x,p2.y-p1.y],[p4.x-p3.x,p4.y-p3.y],[p4.x-p2.x,p4.y-p2.y],[p3.x-p1.x,p3.y-p1.y]])
b = numpy.array([number1,number2,number3,number4])
res = numpy.linalg.lstsq(a,b)
result = [float(res[0][0]),float(res[0][1])]
return result
Swift code so far:
var matrix1 = [[p2.x-p1.x, p2.y-p1.y],[p4.x-p3.x, p4.y-p3.y], [p4.x-p2.x, p4.y-p2.y], [p3.x-p1.x, p3.y-p1.y]]
var matrix2 = [number1, number2, number3, number4]
The Accelerate framework included the LAPACK linear algebra package,
which has a DGELS function to solve under- or overdetermined linear systems. From the documentation:
DGELS solves overdetermined or underdetermined real linear systemsinvolving an M-by-N matrix A, or its transpose, using a QR or LQfactorization of A. It is assumed that A has full rank.
Here is an example how that function can be used from Swift.
It is essentially a translation of this C sample code.
func solveLeastSquare(A A: [[Double]], B: [Double]) -> [Double]? {precondition(A.count == B.count, "Non-matching dimensions")var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" modevar nrows = CInt(A.count)var ncols = CInt(A[0].count)var nrhs = CInt(1)var ldb = max(nrows, ncols)// Flattened columns of matrix Avar localA = (0 ..< nrows * ncols).map {A[Int($0 % nrows)][Int($0 / nrows)]}// Vector B, expanded by zeros if ncols > nrowsvar localB = Bif ldb > nrows {localB.appendContentsOf([Double](count: ldb - nrows, repeatedValue: 0.0))}var wkopt = 0.0var lwork: CInt = -1var info: CInt = 0// First call to determine optimal workspace sizedgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &wkopt, &lwork, &info)lwork = Int32(wkopt)// Allocate workspace and do actual calculationvar work = [Double](count: Int(lwork), repeatedValue: 0.0)dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &work, &lwork, &info)if info != 0 {print("A does not have full rank; the least squares solution could not be computed.")return nil}return Array(localB.prefix(Int(ncols)))
}
Some notes:
dgels_()
modifies the passed matrix and vector data, and expects
the matrix as "flat" array containing the columns of A
.
Also the right-hand side is expected as an array with length max(M, N)
.
For this reason, the input data is copied to local variables first.
- All arguments must be passed by reference to
dgels_()
, that's why
they are all stored in var
s.
- A C integer is a 32-bit integer, which makes some conversions between
Int
and CInt
necessary.
Example 1: Overdetermined system, from http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf.
let A = [[ 2.0, 0.0 ],[ -1.0, 1.0 ],[ 0.0, 2.0 ]]
let B = [ 1.0, 0.0, -1.0 ]
if let x = solveLeastSquare(A: A, B: B) {print(x) // [0.33333333333333326, -0.33333333333333343]
}
Example 2: Underdetermined system, minimum norm
solution to x_1 + x_2 + x_3 = 1.0
.
let A = [[ 1.0, 1.0, 1.0 ]]
let B = [ 1.0 ]
if let x = solveLeastSquare(A: A, B: B) {print(x) // [0.33333333333333337, 0.33333333333333337, 0.33333333333333337]
}
Update for Swift 3 and Swift 4:
func solveLeastSquare(A: [[Double]], B: [Double]) -> [Double]? {precondition(A.count == B.count, "Non-matching dimensions")var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" modevar nrows = CInt(A.count)var ncols = CInt(A[0].count)var nrhs = CInt(1)var ldb = max(nrows, ncols)// Flattened columns of matrix Avar localA = (0 ..< nrows * ncols).map { (i) -> Double inA[Int(i % nrows)][Int(i / nrows)]}// Vector B, expanded by zeros if ncols > nrowsvar localB = Bif ldb > nrows {localB.append(contentsOf: [Double](repeating: 0.0, count: Int(ldb - nrows)))}var wkopt = 0.0var lwork: CInt = -1var info: CInt = 0// First call to determine optimal workspace sizevar nrows_copy = nrows // Workaround for SE-0176dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &wkopt, &lwork, &info)lwork = Int32(wkopt)// Allocate workspace and do actual calculationvar work = [Double](repeating: 0.0, count: Int(lwork))dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &work, &lwork, &info)if info != 0 {print("A does not have full rank; the least squares solution could not be computed.")return nil}return Array(localB.prefix(Int(ncols)))
}